Weighted Fourier frames on self-affine measures

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Class of Self-affine and Self-affine Measures

Let I = {φj}j=1 be an iterated function system (IFS) consisting of a family of contractive affine maps on Rd. Hutchinson [8] proved that there exists a unique compact set K = K(I), called the attractor of the IFS I, such that K = ⋃m j=1 φj(K). Moreover, for any given probability vector p = (p1, . . . , pm), i.e. pj > 0 for all j and ∑m j=1 pj = 1, there exists a unique compactly supported proba...

متن کامل

On Fourier Frames

We solve the problem of Duffin and Schaeffer (1952) of characterizing those sequences of real frequencies which generate Fourier frames. Equivalently, we characterize the sampling sequences for the Paley-Wiener space. The key step is to connect the problem with de Branges’ theory of Hilbert spaces of entire functions. We show that our description of sampling sequences permits us to obtain a cla...

متن کامل

Fourier duality for fractal measures with affine scales

For a family of fractal measures, we find an explicit Fourier duality. The measures in the pair have compact support in R d , and they both have the same matrix scaling. But the two use different translation vectors, one by a subset B in R d , and the other by a related subset L. Among other things, we show that there is then a pair of infinite discrete sets Γ(L) and Γ(B) in R d such that the Γ...

متن کامل

On Analytical Study of Self-Affine Maps

Self-affine maps were successfully used for edge detection, image segmentation, and contour extraction. They belong to the general category of patch-based methods. Particularly, each self-affine map is defined by one pair of patches in the image domain. By minimizing the difference between these patches, the optimal translation vector of the self-affine map is obtained. Almost all image process...

متن کامل

On Affine Frames with Transcendental Dilations

We answer a question of O. Christensen about affine systems in L2(R). Specifically, we show that if the dilation factor a > 1 is transcendental, then cancellations cannot occur between different scales, in the conditions for the affine system to form a frame. Such cancellations are known to occur when a is an integer.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Analysis and Applications

سال: 2018

ISSN: 0022-247X

DOI: 10.1016/j.jmaa.2017.12.055